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Outline

• The LArTPC concept and ArgoNeuT

• The physics run.

• What can ArgoNeuT see?

• What can ArgoNeuT tell us about FSI and vertex 
activity in general?

• Reconstruction and analysis status

Joshua Spitz, Yale University
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A wish list for accelerator-based 
neutrino oscillation physics

• Beam:

• Intense, pure beam w/ a smartly chosen L/E to coincide with 
the parameter space of (Δm2, θ) that you want to explore.

• Detector(s):

• High resolution 3D imaging

• Precise calorimetric reconstruction

• Fully active

• Homogeneous volume

• Low energy threshold

• Particle ID (background suppression)

• Big (or scalable) and relatively inexpensive
Joshua Spitz, Yale University
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The LArTPC concept

Joshua Spitz, Yale University
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ArgoNeuT TPC and cryostat

Joshua Spitz, Yale University

The TPC, about to enter the inner cryostat

The fully-instrumented detector in the beamline

Cryostat Volume 500 Liters

TPC Volume 175 Liters

# Electronic Channels 480

Wire Pitch 4 mm

Electronics Style (Temperature) JFET (293 K)

Max. Drift Length (Time) 0.5m (330μs)

Light Collection None
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ArgoNeuT in the NuMI beam

Joshua Spitz, Yale University

NuMI beamline at Fermilab
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ArgoNeuT

MINOS ND

LE-10 neutrino-mode



ArgoNeuT’s physics run
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Off-the-shelf cryocooler failure

• ArgoNeuT (NSF/DOE) completed its phase I physics 
run, lasting from 9/14/2009-2/22/2010. 

• Physics goals:

• Measure charged-current absolute and differential 
cross sections in the 1-5 GeV range with high 
sensitivity to the products of FSI.

• dE/dx particle separation (e.g. e/γ) capabilities of 
LArTPCs will be demonstrated.

• Developing automated reconstruction techniques, 
to be used for ArgoNeuT and future LArTPCs.

• Stable, shift-free operation for >5 months! 

• The first 1000s of (anti-)neutrino LArTPC events 
collected in a low-energy (~3 GeV) neutrino beam ever!

Joshua Spitz, Yale University

2 weeks in neutrino-mode, 4.5 months in anti-neutrino-mode
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• The actual wire pulses can be seen here in the “wire view”.

• The color scale is indicative of the energy deposited along the track.

How to read the event display?
time



CCQE interactions
• What can ArgoNeuT really see with pixel size of 4.0x0.3 mm2?

• Well-resolved proton tracks as low as 50 MeV.

• De-excitation photons.

Let’s take a look at some 
neutrino-mode events!

Joshua Spitz, Yale University
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ArgoNeuT Data
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Addressing the CCQE puzzle
• The CCQE interaction is the “golden channel” for most GeV-scale neutrino oscillation experiments.

• However, the CCQE cross section uncertainty over most of the relevant energy range is large.For example, 
recent MiniBooNE and NOMAD (both 12C) CCQE cross section measurements disagree by up to 30% or more.

• Both detectors are unable to fully resolve the “vertex activity” (protons) associated with CCQE events.

• MiniBooNE’s CCQE analysis is blind to protons.

• NOMAD is blind to protons with energy less than ~300 MeV.

• With mm-scale resolution and 3D imaging, ArgoNeuT will analyze the vertex activity kinematics and measure 
differential kinematic and total cross sections for CCQE-like (anti-)neutrino events from ~1-5 GeV.

•Recent MiniBooNE and NOMAD (both 12C)
CCQE cross section measurements disagree 
by up to 30% or more. 
•The discrepancy may be due to a CCQE 
multinucleon channel in which two correlated 
same-flavor nucleons are ejected. 
•Most neutrino detectors have a difficult time 
resolving vertex activity.
•ArgoNeuT, with its mm-scale resolution and 
3D imaging, will analyze the kinematics of 
vertex activity in CCQE interactions in order to 
understand the multinucleon CCQE channel.

A CCQE-candidate event reconstructed in 3D
G. Zeller

ArgoNeuT
Joshua Spitz, Yale University 18
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Understanding vertex activity
• Not only is ArgoNeuT able to characterize vertex activity in CCQE-like events, it can also differentiate 

neutrinos from anti-neutrinos with the help of the MINOS near detector.

• Comparing neutrino and anti-neutrino CCQE-like events may provide some sensitivity to a possible 
multinucleon channel, involving 2p (2n) pre-FSI final states for neutrino (anti-neutrino) events.

Joshua Spitz, Yale University

A zoomed-in view of a CCQE-like neutrino event with evidence of vertex activity

10 cm 10 cm 

Neutrino CCQE (2 protons) Anti-neutrino CCQE (0 protons)

mu+mu-

muonmuon

Neutrino CCQE Anti-neutrino CCQE

DataData

νµn→ µ−pp νµp→ µ+nn
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ArgoNeuT analysis
• ArgoNeuT is currently analyzing the neutrino-mode data set, 

representing 2 weeks out of the 5 month total physics run. 

• Neutrino and “maybe” neutrino events have been identified with a 
combination of software and human-based event scanning.

Preliminary
Preliminary

Joshua Spitz, Yale University
20

Beam direction Beam direction

*Fiducial cuts have been applied

*Fiducial cuts have been applied
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ArgoNeuT analysis

• The number of tracks and showers 
in each neutrino-mode candidate 
event has also been determined.

Preliminary

Preliminary

Events with more tracks are easier to 
positively identify as neutrinos

Neutrino-mode expected (Nuance MC) rates

Joshua Spitz, Yale University
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Nuance channel Reaction #(nu mode)/0.1E20 POT

n/a νµ CC 1250

n/a νµ CC 104

n/a νe CC 25

n/a νe CCQE 2

CCQE 1 (CC) νµn −→ µ−p 206

NCelastic 2 (NC) νµn −→ νµn 37

2 (NC) νµp −→ νµp 26

Single pion resonant 3 (CC) νµp −→ µ−pπ+ 148

4 (CC) νµn −→ µ−pπ0 88

5 (CC) νµn −→ µ−nπ+ 114

6 (NC) νµp −→ νµpπ0 30

7 (NC) νµp −→ νµnπ+ 25

8 (NC) νµn −→ νµnπ0 37

9 (NC) νµn −→ νµpπ− 33

DIS 91 (CC) νµN −→ µ−X 545

92 (NC) νµN −→ νµX 176

Coherent/diffractive 96 (NC) νµA −→ νµAπ0 13

97 (CC) νµA −→ µ−Aπ+ 24



3D-reconstruction of muons Angular distribution of muons (NuMI beam is at 3o)
Joshua Spitz, Yale University

Preliminary

Preliminary

• The first step in ArgoNeuT’s neutrino 
reconstruction algorithm is to 
reconstruct the muon. 

• Along with calorimetry and tracking 
within the ArgoNeuT TPC, we are also 
working on matching tracks with the 
downstream MINOS near detector.

Beam

ArgoNeuT

Preliminary

Muon calorimetry (dE/dx)

Automated reconstruction of muons
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Joshua Spitz, Yale University

ArgoNeuT employs the downstream MINOS near 
detector to fully reconstruct muon sign and energy

• The “lining up” of ArgoNeuT and MINOS has 
been accomplished with the use of neutrino-
induced through-going muons.

23
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Reconstructing neutrino events

3D reconstructionHit finding + density-based clustering. 

Preliminary

Preliminary

Line finding/fitting + vertex/endpoint finding 

Preliminary

Strongest vertex
Strong vertex
Weak vertex

• ArgoNeuT has created an automated reconstruction framework 
currently capable of hit finding, calorimetry, cluster/line/vertex-finding, 
track fitting and 3D track matching. 

Joshua Spitz, Yale University 24



                    

Minimum ionizing muon 

~ 2 MeV/cm

Calorimetry

A CCQE-like event’s proton and 
muon dE/dx reconstructed

25

Tlength=24.7 cm
Trec=193.8 MeV

in agreement with GEANT/NIST tables

muon
pion
kaon

proton
data

Heavy ionizing proton

• dE/dx is vital to tagging the muon and proton(s) in CCQE-like events

Joshua Spitz, Yale University

Preliminary

Preliminary

muon 

proton



• ArgoNeuT had a very successful >5 month long physics run in the 
NuMI beamline. The experiment collected the first 1,000s of (anti-)
neutrino events ever with a LArTPC in a low-energy neutrino beam.

• We are hard at work analyzing the neutrino-mode data set. 

• First ArgoNeuT results appearing in Spring/Summer 2011.

• Muon reconstruction.

• CCQE-like differential cross section and vertex activity analyses.

Conclusions

Joshua Spitz, Yale University
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Backup slides
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muon

proton

Joshua Spitz, Yale University 28

dE/dx, kinetic energy, and range



Joshua Spitz, Yale University 29

ArgoNeuT will greatly improve the world’s knowledge of 
FSI and inform generators like GENIE and FLUKA.



ArgoNeuT

~1 km

LE-10 neutrino-mode

Joshua Spitz, Yale University 30



Signal and background
• NCπ0  events represent the largest background for νe 

appearance searches.

• LArTPCs offer 3D imaging and dE/dx to reduce the 
background to nearly zero.

• One gamma converts outside detector 
• Two gammas appear to be one track
• One gamma is absorbed by photo-nuclear interaction 
• A gamma converts close to event vertex

Mis-ID of an NCPi0 event (w/o dE/dx):

→ γγ

A LArTPC solves all of these issues at once!

Joshua Spitz, Yale University
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SRC in neutrino interactions

• This is one of the hottest topics in nuclear physics today! It was 
the “featured topic” at this year’s APS Division of Nuclear 
Physics conference.

• SRC is unobserved in neutrino interactions!

neutrino
muon

boson

muon

neutrino

SRC in CCQE

Majority (~90%) of pairs are n-p. ~20% of nucleons are paired in Ar

νµn→ µ−pp

Muon
Neutrino

Joshua Spitz, Yale University

νµn→ µ−pp
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NOMAD and MiniBooNE vertex activity

• MiniBooNE does not consider nucleons in their 
CCQE cross section analysis.

NOMAD does consider nucleons in their CCQE cross 
section analysis. However, their energy threshold for 
proton reconstruction is ~300 MeV.
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What does SRC evidence look like?
• Backward going protons, 

which are quite unlikely only 
considering kinematic phase 
space.

• High momentum protons.

• (n protons in neutrino 
CCQE-like)-(n protons in 
anti-neutrino CCQE-like)>1 
(after accounting for FSI)

• In general: vertex activity 
differences between neutrino 
and anti-neutrino.

Backward-going protons 
above Fermi sea

Joshua Spitz, Yale University
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